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RMI Exception handling

– Connection
• Server not found
• Game full 

– Soft disconnection
• Set cpu to true
• Allow reconnect

– Hard disconnection
• Server side automatic client  disconnection

– Start server
• autodetect if we have to run rmi
• Able to stop (unbind model)

– Kill server
• Client auto disconnect timeout



RMI Example
try {

//create rmi registry

java.rmi.registry.LocateRegistry.createRegistry(1099);

} catch (RemoteException e) {

try{

//rmi already started? try to connect

java.rmi.registry.LocateRegistry.getRegistry();

} catch (RemoteException ex) {window.displayErrorPane("Unable to contact/create RMI 

registry");

return null;

}

}

//we have a registry ready test if server is already in registry

try {

try{

Naming.lookup("ModelManager");

}catch(NotBoundException e){

//registry has no server we can create it

model = new ModelManager();

Naming.rebind("ModelManager", model);

return model;

}

window.displayErrorPane("Server already running!");

return null;

} catch (RemoteException e) {

window.displayErrorPane("Server unable to start/connect to rmi!");return null;

}



Advanced Features

• Engine

– Refactoring in order to remove need of lapi.jar

– Map is generated from file (Multiple tiles possible A-Z)

– Ability to send from the server a message to be drawn on an specific individual 
client

– Server menu

– New sprites!

• Items

– Radar powerup shows all the living players on a mini map

– Life powerup gives 20 health points (maximum health is 100%)

– Skull, where a player died. Health decreases rapidly when standing near the 
corpse 



Advanced Features

• Infection

– Randomly :  at startup or if the infected player dies

– Transferred through contact with another player

– Infected player’s health is decreasing (28s until death) but runs faster (has his 
own sprite)

– When a player is dead : « ghost mode » he can move and see all other players 
but others do not see him

• Rounds

– For a round to start, the game waits until all human players are ready 
(spacebar pressed)

– The last living player (survivor) wins the round

– The game ends after 5 rounds displaying the score board

– Server ends after all human players disconnected



Advanced features Example
//check if we have a winner

int remainingPlayers = livingPlayers.size();

if(remainingPlayers > 1){

//infecting new player

infectRandomPlayer();

}else{

//we have a winner!

try{

Player winner = livingPlayers.get(0);

int newscore = score.get(winner.getID()) + winner.getHealth()*10;

winner.setScore(newscore);

score.put(winner.getID(), newscore);

for (ModelListener listener : listenerList) {

try {

listener.displayMessage( winner.getName()+ " Won round "+round, 3000, 200);

} catch (RemoteException e) {

System.out.println("unable to send displaymessage");

}

}

System.out.println(winner.getName() + " Won round " + round);

}catch (IndexOutOfBoundsException e) {

// catch if we made an update but nobody was alive

}

duration (ms)

Y offset



Important changes in java files

• Removed all engine.*

• game.GameThread: remoteException handling for connection errors

• game.Model: added unregister/stop

• game.ModelListener
– added int state to PlayerMovedMessage (for Warmup defined in Config.STATE_*)

– added displayMessage(String message, long duration) to display message on clients

• game.ModelManager: numerous changes for serving game logic

• game.ViewManaer: numerous changes for displaying game logic (messages, 
scoreboard)

• gui.graphics.ScreenManager: new menu for server

• gui.ResourceManager: added loading of item(gem/settables) and tiles images

• Gui.TileMapRenderer: diplay logic (infecte skin, radar, …)

• Model.components.Player: added attributs, health, infected +PlayerDieTimerTask

• Serialized: GameAction, PlayerMovedMessage, ResourceManager, TileMap, Gem, 
Settable, Player, SerialTimer, PlayerDieTimerTask










