
28 Seconds Later

JAVA RMI PROJECT

Former architecture

GameThread

ViewManager ModelManager

ModelModelListener

Player

TileMap

PlayerMoved
Message

GameAction

ResourceMana
ger

TileMapRende
rer

New architecture

GameThread

ViewManager
ModelManager

Model
ModelListener

Player

TileMap

PlayerMovedMessage

GameAction

ResourceManager

TileMapRenderer

GameThread
RMI

ModelManager_Stub

UnicastRemoteObject
UnicastRemoteObject

ViewManager_Stub
Remote

Remote
Remote

Remote

Serializable

SerializableSerializable

Serializable

Serializable

Gem
Serializable

Naming.lookup Naming.rebind

PlayerMovedMessage

register

Client
Server

RMI Exception handling

– Connection
• Server not found
• Game full

– Soft disconnection
• Set cpu to true
• Allow reconnect

– Hard disconnection
• Server side automatic client disconnection

– Start server
• autodetect if we have to run rmi
• Able to stop (unbind model)

– Kill server
• Client auto disconnect timeout

RMI Example
try {

//create rmi registry

java.rmi.registry.LocateRegistry.createRegistry(1099);

} catch (RemoteException e) {

try{

//rmi already started? try to connect

java.rmi.registry.LocateRegistry.getRegistry();

} catch (RemoteException ex) {window.displayErrorPane("Unable to contact/create RMI

registry");

return null;

}

}

//we have a registry ready test if server is already in registry

try {

try{

Naming.lookup("ModelManager");

}catch(NotBoundException e){

//registry has no server we can create it

model = new ModelManager();

Naming.rebind("ModelManager", model);

return model;

}

window.displayErrorPane("Server already running!");

return null;

} catch (RemoteException e) {

window.displayErrorPane("Server unable to start/connect to rmi!");return null;

}

Advanced Features

• Engine

– Refactoring in order to remove need of lapi.jar

– Map is generated from file (Multiple tiles possible A-Z)

– Ability to send from the server a message to be drawn on an specific individual
client

– Server menu

– New sprites!

• Items

– Radar powerup shows all the living players on a mini map

– Life powerup gives 20 health points (maximum health is 100%)

– Skull, where a player died. Health decreases rapidly when standing near the
corpse

Advanced Features

• Infection

– Randomly : at startup or if the infected player dies

– Transferred through contact with another player

– Infected player’s health is decreasing (28s until death) but runs faster (has his
own sprite)

– When a player is dead : « ghost mode » he can move and see all other players
but others do not see him

• Rounds

– For a round to start, the game waits until all human players are ready
(spacebar pressed)

– The last living player (survivor) wins the round

– The game ends after 5 rounds displaying the score board

– Server ends after all human players disconnected

Advanced features Example
//check if we have a winner

int remainingPlayers = livingPlayers.size();

if(remainingPlayers > 1){

//infecting new player

infectRandomPlayer();

}else{

//we have a winner!

try{

Player winner = livingPlayers.get(0);

int newscore = score.get(winner.getID()) + winner.getHealth()*10;

winner.setScore(newscore);

score.put(winner.getID(), newscore);

for (ModelListener listener : listenerList) {

try {

listener.displayMessage(winner.getName()+ " Won round "+round, 3000, 200);

} catch (RemoteException e) {

System.out.println("unable to send displaymessage");

}

}

System.out.println(winner.getName() + " Won round " + round);

}catch (IndexOutOfBoundsException e) {

// catch if we made an update but nobody was alive

}

duration (ms)

Y offset

Important changes in java files

• Removed all engine.*

• game.GameThread: remoteException handling for connection errors

• game.Model: added unregister/stop

• game.ModelListener
– added int state to PlayerMovedMessage (for Warmup defined in Config.STATE_*)

– added displayMessage(String message, long duration) to display message on clients

• game.ModelManager: numerous changes for serving game logic

• game.ViewManaer: numerous changes for displaying game logic (messages,
scoreboard)

• gui.graphics.ScreenManager: new menu for server

• gui.ResourceManager: added loading of item(gem/settables) and tiles images

• Gui.TileMapRenderer: diplay logic (infecte skin, radar, …)

• Model.components.Player: added attributs, health, infected +PlayerDieTimerTask

• Serialized: GameAction, PlayerMovedMessage, ResourceManager, TileMap, Gem,
Settable, Player, SerialTimer, PlayerDieTimerTask

